Journal of Organometallic Chemistry, 145 (1978) 75–77 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

He(I) PHOTOELECTRON SPECTRA OF MIXED CARBONYLTRIFLUOROPHOSPHINE COMPLEXES OF ZEROVALENT IRON

ROBERT A. HEAD, JOHN F. NIXON *, NICHOLAS P.C. WESTWOOD **

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

and RONALD J. CLARK

Chemistry Department, Florida State University, Tallahassee, Florida (U.S.A.) (Received September 7th, 1977)

Summary

The UV PE spectra of complexes of the type $Fe(CO)_x(PF_3)_{5-x}$ are presented and discussed.

Results and discussion

Previous UV photoelectron spectroscopic studies on transition metal carbonyl complexes and their trifluorophosphine analogues [1-4] have shown the similarity in ligand field strengths of the two ligands and established that the ionisation potentials of metal *d*-orbitals (and metal-hydride σ -orbitals in hydrido complexes) are always slightly larger for the PF₃ compounds.

Here we present data on the He(I) photoelectron spectra of several mixed iron carbonyl trifluorophosphine complexes of the type $Fe(CO)_x(PF_3)_{5-x}$ (x = 4, 3, and 1) which support these earlier conclusions and also confirm the trends in first ionisation potentials obtained from mass spectroscopic studies on this series of compounds by Müller et al. [5].

The photoelectron spectrum of $Fe(CO)_4(PF_3)$ shown in Fig. 1, which is typical, shows two low energy bands of roughly equal intensity similar in appearance to those observed in $Fe(CO)_5$ [6] and $Fe(PF_3)_5$ [1], which are readily assigned to ionisations from orbitals essentially of metal 3*d*-character. The remaining bands in increasing order of energy arise from excitations from Fe-P σ -bonding orbitals and carbonyl and fluorine lone pair orbitals respectively. As expected, there is considerable overlap of the highest energy bands.

^{*} Author to whom correspondence should be addressed.

^{**} Present address: Chemistry Department, University of British Columbia, Vancouver, B.C. (Canada).

Fig. 1. He(I) PE spectrum of Fe(CO)₄(PF₃).

TABLE 1

METAL d-ORBITAL ENERGIES FOR M(CO)x (PF3)5-x COMPLEXES

Complex	First adiabatic IP [5] (eV)	Vertical IP (eV)	Ref.
Fe(PF3)5	8.83	9.15, 10.45	[1]
Fe(CO)(PF3)4	8.62	9.18, 10.32	This work
Fe(CO)2(PF3)3	8.61		<u> </u>
Fe(CO)3(PF3)2	8.47	8.95, 10.23	This work
Fe(CO)4(PF3)	_	8.75, 9.88	This work
Fe(CO)5	7.96	8.60, 9.86	[6]

The band (Fe–P- σ) at 12.99 eV in Fe(CO)₄(PF₃) lies close to the value found previously for Fe(PF₃)₅ [1], while broader bands of similar energy are observed for Fe(CO)_x(PF₃)_{5-x} (x = 1, 3).

Inspection of the data listed in Table 1, which also includes the first adiabatic IP [5], shows that there is an overall increase in the iron 3*d*-orbital energies along the series from Fe(CO)₅ to Fe(PF₃)₅, presumably reflecting the slightly greater overall electron-withdrawing effect of the trifluorophosphine ligand.

The complexes were prepared by literature methods [7] and carefully purified by chromatography. Their purity was established by IR spectroscopy.

Aclnowledgements

We thank NATO and SRC for financial support for this work and Prof. M.F. Lappert for use of the PE spectrometer.

References

- 1 R.A. Head, J.F. Nixon, G.J. Sharp and R.J. Clark, J. Chem. Soc. Dalton, (1975) 2054 and ref. therein.
- 2 J.F. Nixon, J. Chem. Soc. Dalton. (1973) 2226.
- 3 P.J. Bassett, B.R. Higginson, D.R. Lloyd, N. Lynaugh and P.J. Roberts, J. Chem. Soc. Dalton, (1974) 2316.

4 R.A. Head, J.F. Nixon and R.J. Clark, J. Organometal. Chem., 135 (1977) 209.

-

5 J. Müller, K. Fenderl and B. Mertschenk, Chem. Ber., 104 (1971) 700.

6 D.R. Lloyd and E.W. Schlag, Inorg. Chem., 8 (1969) 2544.

7 R.J. Clark, Inorg. Chem., 3 (1964) 1395.

.